

MH-CET-2015 Subjects: Physics, Chemistry & Biology

Question Booklet	Version
------------------	---------

22

(Write this number on your Answer Sheet)

MH-CET-2015 Roll No.								
	Answer Sheet No.							

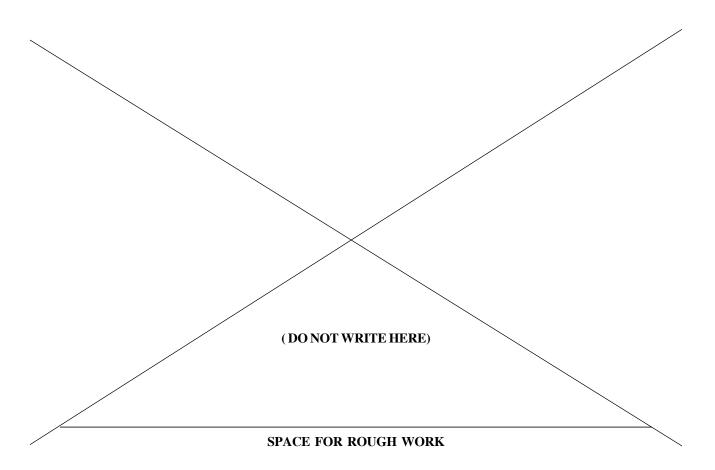
Ouestion Booklet Sr. No.

(Write this number on your Answer Sheet)

Day and Date: Thursday, 07th May, 2015

Duration: 3.00 Hours Total Marks: 200

This is to certify that, the entries of MH-CET Roll No. and Answer Sheet No. have been correctly written and verified.


Candidate's Signature

Invigilator's Signature

Instructions to Candidates

- 1. This question booklet contains 200 Objective Type Questions (Multiple Choice Questions (MCQ)) in the subjects of Physics (50), Chemistry (50) and Biology (100).
- 2. The question paper and OMR (Optical Mark Reader) Answer Sheet is issued separately at the start of the examination.
- 3. Choice and sequence for attempting questions will be as per the convenience of the candidate.
- 4. Candidate should carefully read the instructions printed on the Question Booklet and Answer Sheet and make the correct entries on the Answer Sheet. As Answer Sheets are designed to suit the OPTICAL MARK READER (OMR) SYSTEM, special care should be taken to mark the entries correctly. Special care should be taken to fill QUESTION BOOKLET VERSION, SERIAL No. and MH-CET Roll No. accurately. The correctness of entries has to be cross-checked by the invigilators. The candidate must sign on the Answer Sheet and Question Booklet.
- 5. Read each question carefully.
- 6. Determine the one correct answer from out of the four available options given for each question.
- 7. Fill the appropriate circle completely like this ●, for answering a particular question. Mark with Black ink ball point pen only.
- 8. Each question with correct response shall be awarded one (1) mark. There shall be no negative marking. No mark shall be granted for marking two or more answers of same question, scratching or overwriting.
- 9. Use of whitener or any other material to erase/hide the circle once filled is not permitted.
- 10. Avoid overwriting and/or striking of answers once marked.
- 11. Rough work should be done only on the blank space provided on the Question Booklet. **Rough work should** not be done on the Answer Sheet.
- 12. The required mathematical tables (Log etc.) is provided along with the question booklet.
- 13. Immediately after the prescribed examination time is over, the Question Booklet and Answer sheet is to be returned to the Invigilator. Confirm that both the Candidate and Invigilator have signed on question booklet and answer sheet.
- 14. No candidate is allowed to leave the examination hall till the end of examination.

-3-PHYSICS

1.	For diama	gnetic materials, magnetic suscept	tibilit	ty is	
	A) smal	l and negative	B)	small and positive	
	C) large	and negative	D)	large and positive	
2.	For Balme	er series, wavelength of first line is	· λ ₁	and for Brackett s	series, wavelength of first line is
	λ_2 then	$\frac{\lambda_1}{\lambda_2}$ is			
	A) 0.082	1	B)	0.162	
	C) 0.198	8	D)	0.238	
3.		nce of a point on the screen from 5 m. If wavelength of light used is			
	A) 10 th	bright	B)	10 th dark	
	C) 9 th b	right	D)	9 th dark	
4.	Same curr	rent is flowing in two a.c. circuits. F	First	contains only indu	ctance and second contains only
	capacitano	ce. If frequency of a.c. is increased	d for	both, the current w	vill
	A) incre	ease in first circuit and decrease in	seco	nd	
	B) incre	ease in both circuits			
	C) decre	ease in both circuits			
	D) decre	ease in first circuit and increase in	seco	nd	
5.	The differ	rence in the effective capacity of tw	wo si	milar capacitors w	hen joined in series and then in
	parallel is	$6\mu F$. The capacity of each capaci	itor i	S	
	A) 2μF	B) 4μF		8μF	D) 16μF
		SPACE FOR	ROU	JGH WORK	

- 6. A liquid rises to a height of 1.8 cm in a glass capillary 'A'. Another glass capillary 'B' having diameter 90% of capillary 'A' is immersed in the same liquid. The rise of liquid in capillary 'B' is
 - A) 1.4 cm
- B) 1.8 cm
- C) 2.0 cm
- D) 2.2 cm
- 7. A particle of mass 'm' is moving in circular path of constant radius 'r' such that centripetal acceleration is varying with time 't' as K^2 r t^2 where K is a constant. The power delivered to the particle by the force acting on it is
 - A) $m^2 K^2 r^2 t^2$
- B) mK^2r^2t
- C) m K^2 r t^2
- D) m K r^2 t
- 8. A simple pendulum is oscillating with amplitude 'A' and angular frequency 'ω'. At displacement 'x' from mean position, the ratio of kinetic energy to potential energy is
 - A) $\frac{x^2}{\Delta^2 x^2}$ B) $\frac{x^2 A^2}{x^2}$ C) $\frac{A^2 x^2}{x^2}$ D) $\frac{A x}{x}$

- 9. The equation of the progressive wave is $y = a \sin 2\pi \left(nt \frac{x}{5} \right)$. The ratio of maximum particle velocity to wave velocity is
 - A) $\frac{\pi a}{5}$

- B) $\frac{2\pi a}{5}$ C) $\frac{3\pi a}{5}$ D) $\frac{4\pi a}{5}$
- 10. Let 'gh' and 'gd' be the acceleration due to gravity at height 'h' above the earth's surface and at depth 'd' below the earth's surface respectively. If $g_h = g_d$ then the relation between 'h' and 'd' is
 - A) d = h
- B) $d = \frac{h}{2}$ C) $d = \frac{h}{4}$ D) d = 2h
- 11. A potentiometer wire of length 10 m is connected in series with a battery. The e.m.f. of a cell balances against 250 cm length of wire. If length of potentiometer wire is increased by 1 m, the new balancing length of wire will be
 - A) 2.00 m
- B) 2.25 m
- C) 2.50 m
- D) 2.75 m

- 12. Two coils A and B have mutual inductance 2×10^{-2} henry. If the current in the primary is $i = 5 \sin (10\pi t)$ then the maximum value of e.m.f. induced in coil B is
 - A) π volt
- B) $\frac{\pi}{2}$ volt C) $\frac{\pi}{3}$ volt D) $\frac{\pi}{4}$ volt
- 13. For a transistor, the current ratio $\alpha_{dc} = \frac{69}{70}$. The current gain β_{dc} is
 - A) 66
- B) 67
- C) 69
- D) 71
- 14. In Young's double slit experiment, the ratio of intensities of bright and dark bands is 16 which means
 - A) the ratio of their amplitudes is 5
 - B) intensities of individual sources are 25 and 9 units respectively
 - C) the ratio of their amplitudes is 4
 - D) intensities of individual sources are 4 and 3 units respectively
- 15. A range of galvanometer is 'V', when 50Ω resistance is connected in series. Its range gets doubled when 500Ω resistance is connected in series. Galvanometer resistance is
 - A) 100Ω
- B) 200Ω
- C) 300Ω
- D) 400Ω
- 16. A rope 1 cm in diameter breaks if tension in it exceeds 500 N. The maximum tension that may be given to a similar rope of diameter 2 cm is
 - A) 2000 N
- B) 1000 N
- C) 500 N
- D) 250 N
- 17. The length and diameter of a metal wire is doubled. The fundamental frequency of vibration will change from 'n' to (Tension being kept constant and material of both the wires is same)
 - A) $\frac{n}{4}$
- B) $\frac{n}{8}$
- D) $\frac{n}{16}$

- 18. A hollow sphere of mass 'M' and radius 'R' is rotating with angular frequency ' ω '. It suddenly stops rotating and 75% of kinetic energy is converted to heat. If 'S' is the specific heat of the material in $\frac{J}{kg}$ K then rise in temperature of the sphere is (M.I. of hollow sphere = $\frac{2}{3}$ MR²)
 - A) $\frac{R\omega}{4S}$

 $B) \ \frac{R^2 \omega^2}{4S}$

 $C)~\frac{R\omega}{2S}$

- $D) \ \frac{R^2 \omega^2}{2S}$
- 19. A large number of liquid drops each of radius 'a' are merged to form a single spherical drop of radius 'b'. The energy released in the process is converted into kinetic energy of the big drop formed. The speed of the big drop is
 - [ρ = density of liquid, T = surface tension of liquid]
 - A) $\left[\frac{6T}{\rho}\left(\frac{1}{a} \frac{1}{b}\right)\right]^{\frac{1}{2}}$

B) $\left[\frac{6T}{\rho}\left(\frac{1}{b} - \frac{1}{a}\right)\right]^{\frac{1}{2}}$

C) $\left[\frac{\rho}{6T}\left(\frac{1}{a} - \frac{1}{b}\right)\right]^{\frac{1}{2}}$

- D) $\left[\frac{\rho}{6T}\left(\frac{1}{b} \frac{1}{a}\right)\right]^{\frac{1}{2}}$
- 20. A black body radiates heat at temperatures ' T_1 ' and ' T_2 ' ($T_2 > T_1$). The frequency corresponding to maximum energy is
 - A) more at T₁

B) more at T_2

C) equal for T₁ and T₂

D) independent of T₁ and T₂

- 21. Which logic gate produces 'LOW' output when any of the inputs is 'HIGH'?
 - A) AND
- B) OR
- C) NAND
- D) NOR
- 22. An electron of mass 'm' and charge 'q' is accelerated from rest in a uniform electric field of strength 'E'. The velocity acquired by it as it travels a distance 'l' is
 - A) $\left[\frac{2Eql}{m}\right]^{\frac{1}{2}}$

B) $\left[\frac{2Eq}{ml}\right]^{1/2}$

C) $\left[\frac{2 \operatorname{Em}}{\operatorname{a}l}\right]^{1/2}$

- D) $\left[\frac{Eq}{ml}\right]^{1/2}$
- 23. A light is travelling from air into a medium. Velocity of light in a medium is reduced to 0.75 times the velocity in air. Assume that angle of incidence 'i' is very small, the deviation of the ray is
 - A) i

- B) $\frac{i}{3}$ C) $\frac{i}{4}$ D) $\frac{3i}{4}$
- 24. The electric field intensity at a point near and outside the surface of a charged conductor of any shape is 'E₁'. The electric field intensity due to uniformly charged infinite thin plane sheet is 'E₂'. The relation between 'E₁' and 'E₂' is
 - A) $2E_1 = E_2$

B) $E_1 = E_2$

C) $E_1 = 2E_2$

- D) $E_1 = 4E_2$
- 25. Sensitivity of a moving coil galvanometer can be increased by
 - A) decreasing the number of turns of coil
 - B) increasing the number of turns of coil
 - C) decreasing the area of a coil
 - D) by using a weak magnet

- 26. In the expression for Boyle's law, the product 'PV' has dimensions of
 - A) force

B) impulse

C) energy

- D) momentum
- 27. The difference between angular speed of minute hand and second hand of a clock is
 - A) $\frac{59\pi}{900}$ rad/s

B) $\frac{59\pi}{1800}$ rad/s

C) $\frac{59\pi}{2400}$ rad/s

- D) $\frac{59\pi}{3600}$ rad/s
- 28. A metal rod of length 'L', cross-sectional area 'A', Young's modulus 'Y' and coefficient of linear expansion 'α' is heated to 't' °C. The work that can be performed by the rod when heated is
 - A) $\frac{\text{YA} \alpha \text{Lt}^2}{2}$

B) $\frac{\text{YA} \alpha^2 \text{Lt}^2}{2}$

C) $\frac{\text{YA}\,\alpha^2\,L^2\,t^2}{2}$

- D) $\frac{\text{YA} \alpha \text{Lt}}{2}$
- 29. In sonometer experiment, the bridges are separated by a fixed distance. The wire which is slightly elastic, emits a tone of frequency 'n' when held by tension 'T'. If the tension is increased to '4T', the tone emitted by the wire will be of frequency
 - A) n

- B) 2n
- C) Slightly greater than 2n
- D) Slightly less than 2n
- 30. A particle performs S.H.M. with amplitude 25 cm and period 3 s. The minimum time required for it to move between two points 12.5 cm on either side of the mean position is
 - A) 0.6 s
- B) 0.5 s
- C) 0.4 s
- D) 0.2 s

31. A cord is wound around the circumference of wheel of radius 'r'. The axis of the wheel is horizontal and moment of inertia about it is 'I'. The weight 'mg' is attached to the end of the cord and falls from rest. After falling through a distance 'h', the angular velocity of the wheel will be

A)
$$[mgh]^{\frac{1}{2}}$$

B)
$$\left[\frac{2 \, \text{mgh}}{1 + 2 \, \text{mr}^2}\right]^{\frac{1}{2}}$$

C)
$$\left[\frac{2 \text{ mgh}}{1 + \text{mr}^2}\right]^{\frac{1}{2}}$$

D)
$$\left[\frac{\text{mgh}}{\text{I} + \text{mr}^2}\right]^{\frac{1}{2}}$$

32. A toy cart is tied to the end of an unstretched string of length 'l'. When revolved, the toy cart moves in horizontal circle with radius '2l' and time period T. If it is speeded untill it moves in horizontal circle of radius '3l' with period T₁, relation between T and T₁ is (Hooke's law is obeyed)

A)
$$T_1 = \frac{2}{\sqrt{3}}T$$

B)
$$T_1 = \sqrt{\frac{3}{2}} T$$

C)
$$T_1 = \sqrt{\frac{2}{3}} T$$

D)
$$T_1 = \frac{\sqrt{3}}{2} T$$

33. In a pipe open at both ends, ' n_1 ' and ' n_2 ' be the frequencies corresponding to vibrating lengths ' l_1 ' and $'l_2$ ' respectively. The end correction is

A)
$$\frac{n_1 l_1 - n_2 l_2}{2(n_1 - n_2)}$$

B)
$$\frac{n_2 l_2 - n_1 l_1}{2(n_2 - n_1)}$$

C)
$$\frac{n_2 l_2 - n_1 l_1}{2(n_1 - n_2)}$$

D)
$$\frac{n_1 l_1 - n_2 l_2}{(n_1 - n_2)}$$

34. A mass is suspended from a spring having spring constant 'K' is displaced vertically and released, it with period 'T'. The weight of the mass suspended (g = gravitational acceleration)

A)
$$\frac{KTg}{4\pi^2}$$

B)
$$\frac{\text{KT}^2\text{g}}{4\pi^2}$$
 C) $\frac{\text{KTg}}{2\pi^2}$

C)
$$\frac{\text{KTg}}{2\pi^2}$$

D)
$$\frac{KT^2g}{2\pi^2}$$

- 35. A satellite of mass 'm' is revolving in circular orbit of radius 'r' round the earth. Its angular momentum w.r.t. the centre of its orbit is (M = mass of earth, G = universal gravitational constant)
 - A) $(GMmr)^{\frac{1}{2}}$

B) $(GMm^2 r)^{\frac{1}{2}}$

C) $(G M m^2 r^2)^{\frac{1}{2}}$

- D) $(G M^2 m^2 r)^{\frac{1}{2}}$
- 36. The capacity of a parallel plate air capacitor is $2\,\mu F$ and voltage between the plates is changing at the rate of $3\,V/S$. The displacement current in the capacitor is
 - A) 2μF
- B) 3μF
- C) 5 µF
- D) 6µF
- 37. A capacitor $C_1 = 4\,\mu\text{F}$ is connected in series with another capacitor $C_2 = 1\,\mu\text{F}$. The combination is connected across d.c. source of 200 V. The ratio of potential across C_2 to C_1 is
 - A) 2:1
- B) 4:1
- C) 8:1
- D) 16:1
- 38. When monochromatic light of wavelength ' λ ' is incident on a metallic surface, the stopping potential for photoelectric current is ' $3V_0$ '. When same surface is illuminated with light of wavelength ' 2λ ', the stopping potential is ' V_0 '. The threshold wavelength for this surface when photoelectric effect takes place is
 - Α) λ
- B) 2λ
- C) 3 \(\lambda\)
- D) 4λ
- 39. A coil carrying current 'I' has radius 'r' and number of turns 'n'. It is rewound so that radius of new coil is $\frac{r}{4}$ and it carries current 'I'. The ratio of magnetic moment of new coil to that of original coil is
 - A) 1

- B) $\frac{1}{2}$
- C) $\frac{1}{4}$
- D) $\frac{1}{8}$

40.	The	de-Broglie wavele	ngth ' λ ' of a particle					
	A) is proportional to mass							
	B)	is proportional to i	mpulse					
	C)	is inversely propor	rtional to impulse					
	D)	does not depend o	n impulse					
41.		, ,	the energy of radiation to Bohr's theory is	on ei	mitted in the transi	tion from 4 th excited state to 2 nd		
	A)	0.567 eV	B) 0.667 eV	C)	0.967 eV	D) 1.267 eV		
42.			omatic light beams of ir intensities in the resul			are superimposed. The maximum		
	A)	3 I and 2 I		B)	9 I and 5 I			
	C)	16 I and 3 I		D)	25 I and I			
43.	The	resistances in left	and right gap of a me	eter	bridge are 20Ω an	d 30Ω respectively. When the		
	resis	tance in the left ga	p is reduced to half its	val	ue, the balance po	int shifts by		
	A)	15 cm to the right		B)	15 cm to the left			
	C)	20 cm to the right		D)	20 cm to the left			
44.	For t	he same angle of ir	ncidence, the angles of	f ref	raction in media 'l	P', 'Q', 'R' and 'S' are 50°, 40°,		
	30°,	20° respectively. T	The speed of light is m	inir	num in medium			
	A)	P	B) Q	C)	R	D) S		
45.	The	process of regaining	g of information fron	n ca	rrier wave at the re	eceiver is termed as		
	A)	demodulation		B)	modulation			
	C)	attenuation		D)	amplification			
	SPACE FOR ROUGH WORK							

46. The pitch of the whistle of an engine appears to drop to $\left(\frac{5}{6}\right)^{th}$ of original value

when it passes a stationary observer. If the speed of sound in air is 350 m/s then the speed of engine is

A) 35 m/s

B) $70 \,\mathrm{m/s}$

C) 105 m/s

- D) 140 m/s
- 47. A solid cylinder has mass 'M', radius 'R' and length 'l'. Its moment of inertia about an axis passing through its centre and perpendicular to its own axis is
 - A) $\frac{2MR^2}{3} + \frac{Ml^2}{12}$

B) $\frac{MR^2}{3} + \frac{Ml^2}{12}$

C) $\frac{3MR^2}{4} + \frac{Ml^2}{12}$

- D) $\frac{MR^2}{4} + \frac{Ml^2}{12}$
- 48. A particle is executing S.H.M. of periodic time 'T'. The time taken by a particle in moving from mean position to half the maximum displacement is $(\sin 30^{\circ} = 0.5)$
 - A) $\frac{T}{2}$

B) $\frac{T}{4}$

C) $\frac{T}{8}$

- D) $\frac{T}{12}$
- 49. The dimensions of Stefan's constant are
 - A) $[M^0 L^1 T^{-3} K^{-4}]$

B) $[M^1 L^1 T^{-3} K^{-3}]$

C) $[M^1 L^2 T^{-3} K^{-4}]$

- D) $[M^1 L^0 T^{-3} K^{-4}]$
- 50. An open and closed organ pipe have the same length. The ratio of 'p'th mode of frequency of vibration of air in two pipes is
 - A) p(2p + 1)
- B) $\frac{2p}{2p-1}$
- C) p
- D) 1

CHEMISTRY

51.	Which among the fe	ollowing is a feature o	f adiabatic expansion	?					
	A) $\Delta V < 0$	B) $\Delta U < 0$	C) $\Delta U > 0$	D) $\Delta T = 0$					
52.	Molarity is defined	as							
	A) the number of	moles of solute dissol	ved in one dm ³ of the	solution					
	B) the number of	moles of solute dissol	ved in 1 kg of solvent						
	C) the number of	moles of solute dissol	ved in 1 dm ³ of the so	olvent					
	D) the number of	moles of solute dissol	ved in 100 ml of the s	olvent					
53.	-	number of monohydro hyl group as a branch	·	drocarbon consisting of five carbor					
	A) 2	B) 3	C) 4	D) 5					
54.		of work done when tw against a pressure of	· ·	compressed from a volume of 1 m ²					
	A) 99 kJ	B) – 99 kJ	C) 114.9 kJ	D) – 114.9 kJ					
55.	Which among the fo	llowing alloys is used in	n making instruments f	or electrical measurements?					
	A) Stainless steel	B) Manganin	C) Spiegeleisen	D) Duralumin					
56.	Potassium dichromachanges by	ate is a good oxidizing	agent, in acidic medi	um the oxidation state of chromium					
	A) 2	B) 3	C) 4	D) 5					
57.	Diethyl amine when	n treated with nitrous a	icid yields						
	A) Diethyl ammor	nium nitrite	B) Ethyl alcohol						
	C) N-nitroso dieth	nyl amine	D) Triethyl ammo	onium nitrite					
58.	What is the most ab	oundant element on ear	rth ?						
	A) Hydrogen	B) Nitrogen	C) Oxygen	D) Silicon					
		SPACE FO	OR ROUGH WORK						

59.	The overall reaction taking place at anode during electrode is			ring electrolysis of fused sodium chloride using suitable				
	A) Oxidation of chloride			Reduction of sodi	ium ions			
	C) Reduction of chlor	rine	D)	Oxidation of Sod	ium atoms			
60.	The only radioactive el	ement among the lant	than	oids is				
	A) Gadolinium	B) Holmium	C)	Promethium	D) Neodynium			
61.	Van't Hoff factor of centre of K_3 [Fe(CN) ₆].	ntimolal solution of K	₃ [Fe	e(CN) ₆] is 3.333. C	alculate the percent dissociation			
	A) 33.33	B) 0.78	C)	78	D) 23.33			
62.	Which of the following	compounds is most a	acid	ic in nature ?				
	A) 4-Chlorobutanoic acid			B) 3-Chlorobutanoic acid				
	C) 2-Chlorobutanoic	acid	D) Butanoic acid					
63.	How is ore of aluminiu	m concentrated?						
	A) roasting		B)	leaching				
	C) froth floatation		D)	using Wilfley tab	le			
64.	Which of the following	compounds has high	est	boiling point ?				
	A) Propan-1-ol	B) n-Butane	C)	Chloroethane	D) Propanal			
65.	Which metal among the	e followings has the h	ighe	est packing efficie	ncy?			
	A) Iron	B) Tungsten	C)	Aluminium	D) Polonium			
66.	Identify a metalloid from	m the following list o	f ele	ements.				
	A) Carbon	B) Neon	C)	Sodium	D) Tellurium			
67.	What is the chemical co	omposition of Nicol's	pris	sm?				
	A) Al_2O_3	B) CaSO ₄	C)	CaCO ₃	D) Na ₃ AlF ₆			
68.	Identify the heteropoly	mer from the list give	n be	elow.				
	A) Polythene	B) Nylon-6	C)	Teflon	D) Nylon-6, 6			

69.	What is the basicity of	orthophosphorus aci	d ?	
	A) One	B) Two	C) Three	D) Four
70.	The correct order of rea	activity of aldehydes	and ketones towards h	ydrogen cyanide is
	A) CH ₃ COCH ₃ ⟩CH	₃ CHO⟩HCHO	B) CH ₃ COCH ₃ >HC	CHO⟩CH ₃ CHO
	C) CH ₃ CHO\CH ₃ C	OCH₃⟩HCHO	D) HCHO/CH ₃ CH	O⟩CH ₃ COCH ₃
71.	Which of the following	g proteins is globular	?	
	A) Collagen	B) Albumin	C) Myosin	D) Fibroin
72.	A mixture of benzalde	hyde and formaldehy	de when treated with	50% NaOH yields
	A) Sodium benzoate	and sodium formate		
	B) Sodium formate a	and benzyl alcohol		
	C) Sodium benzoate	and methyl alcohol		
	D) Benzyl alcohol an	nd methyl alcohol		
73.	Which among the follo	owing solutions is NC	OT used in determination	on of the cell constant?
	A) $10^{-2} \text{ M KC} l$	B) $10^{-1} \text{ M KC} l$	C) 1 M KC <i>l</i>	D) Saturated KCl
74.	Which halogen forms a	n oxyacid that contair	ns the halogen atom in t	ripositive oxidation state?
	A) Fluorine	B) Chlorine	C) Bromine	D) Iodine
75.	Name the metal that is furnace and heating that		-	loping hearth of a reverberatory
	A) Mercury	B) Galium	C) Zirconium	D) Copper
76.	Which of the following	g is the most stable di	azonium salt ?	
	A) $C_6H_5CH_2N_2^+X^-$	B) $CH_3N_2^+X^-$	C) $CH_3CH_2N_2^+X^-$	D) $C_6H_5N_2^+X^-$
77.	Electronic configuration consists of how many a		k element is exceptiona	al. One molecule of that elemen
	A) One	B) Two	C) Three	D) Four

- 78. The correct IUPAC name of $[CO(NH_3)_3(NO_2)_3]$
 - A) Triammine trinitrito N cobalt (III)
- B) Triammine trinitrito N cobalt (II)
- C) Triammine cobalt (III) nitrite
- D) Triammine trinitrito N cobaltate (III)
- 79. If M, W and V represent molar mass of solute, mass of solute and volume of solution in litres respectively, which among following equations is true?
 - A) $\pi = \frac{MWR}{TV}$ B) $\pi = \frac{TMR}{WV}$ C) $\pi = \frac{TWR}{VM}$ D) $\pi = \frac{TRV}{WM}$

- 80. Replacement of diazonium group by fluorine is known as
 - A) Gattermann reaction

- B) Sandmeyer reaction
- C) Balz-Schiemann reaction
- D) Etard reaction
- 81. What is the volume of water consumed during acid hydrolysis of 1.368 Kg of sucrose?

(Given – molar masses of sucrose = 342, water = 18, density of water = 1 g/cm^3)

- A) 0.072 dm^3
- B) 0.720 dm^3
- C) $0.18 \, \text{dm}^3$
- D) $0.018 \, \text{dm}^3$
- 82. The process in which metal surface is made inactive is called
 - A) Passivation
- B) Galvanizing
- C) Corrosion
- D) Pickling
- 83. Which among the following group 15 element forms most stable pentavalent compound?
 - A) Phosphorus
- B) Antimony
- C) Bismuth
- D) Arsenic
- 84. Which among the following functional groups has been given the highest priority while assigning R-S configuration?
 - $A) C_6H_5$
- B) CN
- C) $C_2 H_5$ D) CH_3
- 85. Given $R = 8.314 \text{ JK}^{-1} \text{ mol}^{-1}$, the work done during combustion of 0.090 kg of ethane (molar mass = 30) at 300 K is
 - A) -18.7 kJ
- B) 18.7 kJ
- C) 6.234 kJ
- D) -6.234 kJ

22

86.	36. What oxoacid of sulphur contains S-S bond in its structure?					
	A) Disulphurous acid	d	B) Disulphuric acid			
	C) Perdisulphuric ac	id	D) Hydrosulphurou	s acid		
87.	Which among the follo	owing detergents is n	on-ionic in character?			
	A) Sodiumlauryl sul	phate	B) Pentaerythrityl st	tearate		
	C) Cetyltrimethyl an	nmonium chloride	D) Sodium n-dodec	yl benzene sulphonate		
88.	Reaction of which amo	ong the following ethe	ers with HI in cold leads	s to formation of methyl alcohol?		
	A) ethyl methyl ethe	r	B) methyl propyl et	her		
	C) isopropyl methyl	ether	D) tert-butyl methyl	ether		
89.	During conversion of a replaced?	glucose into glucose	cyanohydrin, what fun	ctional group/atom of glucose is		
	A) hydrogen		B) aldehydic group			
	C) primary alcoholic	group	D) secondary alcoho	olic group		
90.	Half life period of a firs	st order reaction, $A \rightarrow$	product is 6.93 hour. V	Vhat is the value of rate constant?		
	A) 1.596 h ⁻¹	B) 0.1 h^{-1}	C) 4.802 h^{-1}	D) 10 h ⁻¹		
91.	Which among the follo	owing is a tranquilize	er?			
	A) Aspirin	B) Valium	C) Penicillin	D) Sulphanilamide		
92.	Chlorination of ethane	is carried out in pres	ence of			
	A) anhydrous AlBr ₃		B) mercuric chloride	e		
	C) ultraviolet light		D) zinc chloride			
93.	Identify a 'Chemical tv	win' among the follo	wings.			
	A) Zr-Ta	B) Nb-Tc	C) Hf-Re	D) Nb-Ta		
94.	The relationship between	een rate constant and	half life period of zero	order reaction is given by		
	A) $t_{\frac{1}{2}} = [A]_0 2k$	B) $t_{\frac{1}{2}} = \frac{0.693}{k}$	C) $t_{\frac{1}{2}} = \frac{[A]_0}{2k}$	D) $t_{\frac{1}{2}} = \frac{2[A]_0}{k}$		

A) Dioxygen

C) Benzene

95. Which polymer among the following polymers does NOT soften on heating? A) Bakelite B) Polythene C) Polystyrene D) PVC 96. For which among the following reactions, change in entropy is less than zero? A) Sublimation of Iodine B) Dissociation of Hydrogen C) Formation of water D) Thermal decomposition of Calcium Carbonate 97. $[Cr(NH_3)_6][Cr(SCN)_6]$ and $[Cr(NH_3)_2(SCN)_4][Cr(NH_3)_4(SCN)_2]$ are the examples of what type of isomerism? B) Linkage isomerism A) Ionisation isomerism C) Coordination isomerism D) Solvate isomerism 98. For the reaction $O_{3(g)} + O_{(g)} \rightarrow 2O_{2(g)}$, if the rate law expression is, rate = K[O₃] [O] the molecularity and order of the reaction are respectively A) 2 and 2 B) 2 and 1.33 C) 2 and 1 D) 1 and 2 99. $R - C \equiv N + 2$ (H) $\xrightarrow{\text{(i) SnC}l_2/\text{dil HC}l}$ RCHO + NH₄Cl this reaction is known as A) Etard reaction B) Stephen reaction C) Hell-Vohlard-Zelinsky reaction D) Balz-Schiemann reaction 100. Select a ferromagnetic material from the followings.

SPACE FOR ROUGH WORK

B) Chromium (IV) oxide

D) Dihydrogen monoxide

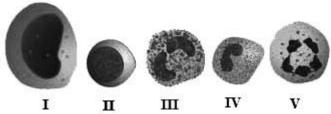
-19-BIOLOGY

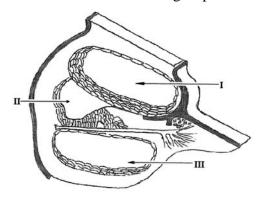
101.	During DNA replicatio	on, the addition of nuc	leot	tides on the lagging	g strand occurs
	A) towards the replication	ating fork	B)	at a faster rate tha	n leading strand
	C) continuously		D)	discontinuously	
102.	The technique of produculture is called	icing large number of	f gei	netically similar pl	ants within short time by tissue
	A) Organogenesis		B)	Somatic hybridiza	ation
	C) Micropropagation		D)	Protoplast culture	
103.	How many sense codor	ns code for 20 known	ess	ential amino acids	?
	A) 61	B) 62	C)	63	D) 64
104.	Which one of the follow	wing is NOT a natura	l me	ethod of vegetative	propagation ?
	A) runner	B) foliar buds	C)	stem tuber	D) grafting
105.	Transposons are sequen	nces of			
	A) DNA	B) mRNA	C)	rRNA	D) tRNA
106.	Earthworm is a				
	A) herbivore		B)	secondary consur	ner
	C) tertiary consumer		D)	detrivore	
107.	To induce formation of	organs in a callus it i	s ne	cessary to provide	
	A) growth hormones	B) water	C)	soil	D) antibiotics
108.	Anemophily is NOT of	oserved in			
	A) Maize	B) Jowar	C)	Sugarcane	D) Salvia
109.	In an ecosystem, the bio	otic components herb	ivoı	ous are	
	A) photosynthetic	B) chemosynthetic	C)	macro consumers	D) micro consumers
110.	The visible portion of li	ight spectrum useful i	n pł	notosynthesis is ref	Ferred to as
	A) RFLP	B) PAR	-	VAM	D) VNTR
111.	In the nomenclature of	enzyme restriction en	don	uclease the Roman	n numeral indicates
	A) number of times it	•		the order of disco	
	C) number of cuts on	n DNA	D)	number of recomb	binants formed
112.	Environmental biotic fa	actor that helps in poll	linat	ion is	
	A) air	B) water		wind	D) insects
113.	How many types of gar	metes will be produce	ed b	y an individual hav	ving genotype AaBbcc?
	A) four	B) three		two	D) one
114.	Self pollination which i	involves two differen	t flo	wers of the same p	lant, is called
	A) autogamy	B) geitonogamy	C)	xenogamy	D) hybridization
115.	The initial step in prepa	aration of beer is		-	
	A) malting	B) carboxylation	C)	clarification	D) distillation

116.	The microbe Pseudom	onas denitrificans pro	oduces Vitai	min		
	A) K	B) D	C) B ₂		D)	B ₁₂
117.	If there are 1280 micro there in its each pollen	=	lar anther, h	now many i	micro	ospore mother cells will be
	A) 80	B) 160	C) 240		D)	1280
118.	Which one of the follo	wing plants DOES N	OT help in	vegetative	prop	agation by leaves?
	A) Begonia	B) Kalanchoe	C) Bryopi	hyllum	D)	Oxalis
119.	Given below are some	reactions and the enz	zymes involv	ved.		
	Identify the CORREC	T pairs.				
	I			П		
	1. Fructose 1,6 diph	osphate \rightarrow 3 PGAL	+ DHAP	a. enolas	e	
	2. Citrate \rightarrow Cis – a	conitate		b. thiokin	nase	
	3. Succinyl Co. A –	→ succinate		c. aconita	ase	
	4. $2 \text{ PGA} \rightarrow \text{PEPA}$			d. aldolas	se	
	A) 1-d, 2-c, 3-b, 4-a		B) 1-a, 2-			
	C) 1-b, 2-a, 3-d, 4-c		D) 1-c, 2-	d, 3-a, 4-b		
120.	Human skin colour is a	-				
	A) Intragenic interact		,	lelic interac	ction	
	C) Quantitative inher		D) Pleiotr	•		
121.	A 340 Å long segmer number of guanine nitr				genou	us bases, what will be the
	A) 10	B) 40	C) 80		D)	160
122.	The final electron acce	ptor during ETS in re	espiration is			
	A) Hydrogen	B) Oxygen	C) FMN		D)	Ubiquinone
123.	The time taken from the seconds.	e fixation of CO ₂ to the	e formation o	of one gluce	ose m	olecule is about
	A) 20	B) 40	C) 60		D)	90
124.	The secondary metabo	lite obtained from Ca	tharanthus	roseus is		
	A) vincristin	B) anthocyanin	C) mentho	ol	D) :	nicotine
125.	Large stout, nocturnal fadaptations for	lowers producing cop	pious nectar	and emittin	ng feri	menting fruity odor, are the
	A) Entomophily	B) Ornithophily	C) Chirop	oterophily	D) .	Anemophily
126.	In the first step of Mon	ohybrid cross experi	ment, Mend	el selected	pea p	plants which were
	A) pure tall as male a	and pure dwarf as fen	nale			
	B) pure tall as female	e and pure dwarf as n	nale			
	C) heterozygous tall	-				
	D) heterozygous tall	as female and pure d	warf as male	e		

127.	7. In Griffith's experiment, the conversion of R-type to S-type of <u>Diplococcus</u> <u>Pneumoniae</u> when mixed with heat killed S-type is called					
	A) mutation	B) transduction	C) transfection	D) transformation		
128.	Semidwarf rice variety	IR-8 was developed	in			
	A) Taiwan	B) Phillipines	C) India	D) China		
129.	Which one of the follo	wing is a non-endosp	ermic seed?			
	A) sunflower	B) coconut	C) ground nut	D) wheat		
130.	Which one of the follo	wing is NOT a myco	herbicide?			
	A) Phytophthora pali	<u>mivora</u>	B) Xanthomonas sp.			
	C) <u>Alternaria crassa</u>		D) <u>Fusarium sp.</u>			
131.	In a cross between red k the phenotypic ratio in			at showing polygenic inheritance		
	A) 1:6:15:20:15	5:6:1	B) 1:4:6:4:1			
	C) 1:2:1		D) 2:1			
132.	In angiosperms during	•	•	develop from		
	A) oospore	B) integument	C) endosperm	D) cotyledon		
133.	Manganese, calcium a	-		•		
	A) Absorption of ligh		B) CO ₂ assimilation			
	C) Photolysis of water		D) ATP synthesis			
134.	Which process does the		-			
	· ·		$CH_3 - CO - COOH +$	-		
	A) complete glycolys		B) complete aerobic	•		
	C) complete anaerob	•	,			
135.	The cloning vector M1	_		D) 1 DV4		
	A) ssRNA	B) dsRNA	C) ssDNA	D) dsDNA		
136.	A desirable change in	genotype of an organ	•			
	A) DNA replication		B) protein synthesis			
	C) rDNA technology		D) m-RNA formation			
137.	G	•		n II and select the correct option:		
	I		II			
	a. Yeast b. <i>Penicillium</i>	_	mentation			
		ii. zoo	-			
	c. Filamentous algaed. <i>Chlamydomonas</i>	e iii. bud iv. con	· ·			
	A) a-iii, b-iv, c-i, d-ii		B) a-ii, b-iii, c-i, d-iv	,		
	C) a-iv, b-iii, c-ii, d-i		D) a-iii, b-ii, c-i, d-iv			
	-,,, ,		,,, - 1, - 1,			

138.	38. How much of the energy released during aerobic respiration is approximately conserved in the for of ATP ?							
	A) 20% B) 40%	C) 60%	D) 100%					
139.	The deflection of pitch angle betw	een two successive steps (1	rungs) of DNA is					
	A) 72° B) 54°	C) 36°	D) 18°					
140.	Which one of the following is a Ca	AM plant ?						
	A) Maize B) Kalana	choe C) Sugarcane	D) Jowar					
141.	During Biogas production acetic a	cid is transformed into the	final product by the enzymes of					
	A) Clostridium B) Pseud	omonas C) Penicillium	D) Methanobacillus					
	 The gymnospermic endosperm differ A) haploid and developed from fer B) diploid and developed from fer C) triploid and developed after fer D) triploid and developed before 	emale gametophyte emale gametophyte ertilization fertilization		s it is				
143.	 What is NOT true about emasculat A) It is removal of anthers from f B) It is done before anthesis C) It is to avoid self pollination D) It is done in flowers of plants 	lower	rining an artificial cross?					
144.	Pusa shubhra is a variety of	C)11	D) 1.1					
1 4 5	A) cauliflower B) chilli	C) wheat	D) cabbage					
145.	Which of the following is correct p A) Adenine & Thymine	B) Adenine & (Guanina					
	C) Thymine & Cytosine	D) Guanine & (
1/16	During anaerobic respiration the co	,	•	wme				
140.	TPP, the cofactor required is	onversion of pyravate into	acctaideflyde, afolig with co-chz	ymc				
	A) Mg ⁺⁺ B) Mn ⁺⁺	C) Fe ⁺⁺	D) Zn ⁺⁺					
147.	An international treaty known as N	Montreal Protocol was signed	ed to control emission of					
	A) UV rays B) Ozone	C) CFC	D) Oxygen					
148.	Chloroplasts in higher plants are _	shaped						
	A) kidney B) lens	C) bean	D) dome					
149.	Pollengrain develops from	of anther.						
	A) epidermis B) endoth	ecium C) tapetum	D) sporogenous tissue					
150.	 In processing of eukaryotic hn RNA A) Addition of adenylate residue B) Addition of methyl guanosine C) Addition of methyl guanosine D) Removal of introns 	es at 3' end e triphosphate at 3' end	ailing involves of R	NA.				


151.	All of the following an	imals are ureotelic E	XCE	EPT	
	A) Frog	B) Snake	C)	Turtle	D) Toad
152.	The study of blood ves	sels is termed as			
	A) Angiology	B) Cardiology	C)	Haematology	D) Histology
153.	Plasma cells are derive	d from			
	A) Cytotoxic T – cell	ls	B)	Helper T – cells	
	C) Memory B – cells	3	D)	Memory T – cells	S
154.	Darwin's theory of Ev	olution CANNOT ex	plai	n	
	A) Arrival of fittest		B)	Natural selection	
	C) Prodigality of pro	duction	D)	Struggle for exist	ence
155.	During ovulation, the o	ovary releases			
	A) Oogonia	B) Ootid	C)	Primary oocyte	D) Secondary oocyte
156.	Following are all breed	ds of cows EXCEPT			
	A) Jersey	B) Nagpuri	C)	Sahiwal	D) Sindhi
157.	More than 95 % of tran	sgenic animals are			
	A) Rabbits	B) Mice	C)	Fish	D) Cows
158.	Pick the ODD homolo	gous pair out.			
	A) Bartholin's Gland	l – Cowper's Gland	B)	Clitoris – Penis	
	C) Mons pubis – Gla	ns penis	D)	Labia majora – So	crotum
159.	Which is NOT the fund	ction of lymph?			
	A) Transport R.B.C.	S	B)	Drain excess tissu	ue fluid
	C) Transport lympho	ocyte and antibodies	D)	Transport absorbe	ed fat
160.	A cuckoo laying eggs i	in the nest of other sp	ecie	es of birds, is an ex	ample of
	A) Adelphoparasitism	n	B)	Broodparasitism	
	C) Ectoparasitism		D)	Hyperparasitism	
161.	Morula formed at the e	end of cleavage is		celled.	
	A) 14	B) 16	C)	18	D) 20
162.	Select the CORRECT	pair			
	A) Adaptive Radiation	on – Darwin's Finche	es		
	B) Connecting Link	– Sewall – Wright ef	fect		
	C) Genetic drift – Pe				
	D) Industrial Melanis				
163.	How many pairs of syr		-		
	A) 10	B) 12	C)	22	D) 31


- 164. The first vaccine produced by Edward Jenner, was for protection against
 - A) Hepatitis
- B) Influenza
- C) Chicken pox

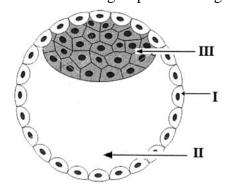
-24-

- D) Small pox
- 165. Which are the phagocytic cells from given diagram?

- A) I and V
- B) I and III
- C) I and IV
- D) I and II
- 166. The reptiles, like dinosaurs were dominant in _____ period.
 - A) Cretaceous
- B) Jurassic
- C) Tertiary
- D) Triassic
- 167. Select the CORRECT identification group of labelled parts I, II, III

- A) I Scala vestibuli, II Scala media, III Scala tympani
- B) I Scala vestibuli, II Scala tympani, III Scala media
- C) I Scala tympani, II Scala media, III Scala vestibuli
- D) I Scala media, II Scala tympani, III Scala media
- 168. The Transgenic animals are generally produced for all of the following needs EXCEPT
 - A) Testing of chemical safety
 - B) Testing of vaccine safety
 - C) Stimulation of pathogenicity
 - D) Production of pharmacologically important Proteins
- 169. Match the following:
 - i. Mercury
- a. Low blood pressure, blindness
- ii. Lead
- b. Hyperkeratosis, Liver cirrhosis
- iii. Arsenic
- c. Bone deformation, testicular atrophy
- iv. Cadmium
- d. Abdominal pain, haemolysis
- e. Anaemia, convulsions
- A) i-e, ii-d, iii-c, iv-b

B) i-d, ii-e, iii-b, iv-c


C) i-c, ii-b, iii-d, iv-a

D) i-b, ii-c, iii-d, iv-e

170. Choose the CORRECT group of labellings

- A) I Trophoblast, II Archenteron, III Micromeres
- B) I Trophoblast, II Blastocoel, III Megameres
- C) I Trophoblast, II Archenteron, III Inner mass cells
- D) I Trophoblast, II Blastocoel, III Inner mass cells
- 171. Juxta glomerular cells of kidney secrete hormone
 - A) Angiotensinogen

B) Angiotensin II

C) Coherin

- D) Renin
- 172. The marine fish among the following varieties is
 - A) Stromateus
- B) Labeo
- C) Cirrhina
- D) Catla
- 173. Which of the following animal was selected by Morgan for studying linkage?
 - A) Apis indica

- B) Agrobacterium tumafaciens
- C) Drosophila melanogaster
- D) E. Coli
- 174. The increase in blood flow to heart stimulates secretion of
 - A) Renin

B) Oxytocin

C) Antidiuretic hormone

- D) Atrial natriuretic factor
- 175. Heaviness with severe chest pain which may disappear with rest indicates
 - A) Angina pectoris

- B) Atherosclerosis C) Arteriosclerosis D) Hyperthyroidism
- 176. One of the following cells secretes a hormone
 - A) Cells of Leydig

B) Cells of Sertoli

C) Primary spermatocyte

- D) Secondary spermatocyte
- 177. Find the odd one out, with respect to X-linkage.
 - A) Haemophilia
- B) Myopia
- C) Nephritis
- D) Night blindness
- 178. The first fossil of Australopithecus was discovered in
 - A) Olduvai Gorge, Tanzania
- B) Fayum deposits of Egypt

C) Siwalik hills in India

- D) Taung in South Africa
- 179. Which of the following options are CORRECT?
 - 1. Heroin
- Stimulant
- 2. Marijuana
- Cardiovascular
- 3. Cocaine
- Hallucinations

Sedative

- 4. Morphine A) 1, 2 and 3
- B) 1, 3 and 4
- C) 2, 3 and 4
- D) 1, 2 and 4

180.	Serotonin and Melatoni	n are hormones, sec	reted by										
	A) Pancreas	B) Pineal body	C) Pituitary gland	D) Thymus									
181.	A Red list of endangere	d species is maintain	ned by										
	A) CSIR	B) IUCN	C) NEERI	D) WLS									
182.	The Human Genome Pr	roject (HGP) was ini	tiated in										
	A) 1988	B) 1990	C) 1992	D) 1994									
183.	Ectoderm gives rise to												
	A) cornea, heart, bron		B) adrenal cortex, to	<u> </u>									
	C) lungs, adrenal medu	ılla, dermis, thyroid	D) enamel of teeth,	nails, adrenal medulla, hair									
184.	Helper T – cells : Lymp	phokines as											
	Killer T – cells :												
	A) Interferons	B) Lysozymes	C) Perforins	D) Prostaglandins									
185.	Epicanthal skin fold and												
	A) Down's syndrome		B) Klinefelter's syn										
	C) Thalassemia		D) Turner's syndron	me									
186.	Forceful muscular contr												
	A) Implantation	,	C) Micturition	,									
187.	In mechanism of hormo												
	A) Cyclic AMP	B) IP ₃	C) Ca ⁺⁺	D) Mg ⁺⁺									
188.	One of the following pa	ir of animals is an ex	•										
	A) Sacculina – crab		B) Plasmodium – A	nopheles									
	C) Golden Jackal – T	_	D) Ascaris – Man										
189.	What is "After birth" re												
	A) Amniotic fluid pas	_											
	B) Expulsion of baby		and footol monthsone										
	C) Expulsion of placeD) Secretion of hormo		ind foetal memorane										
100	Which group of cranial		all movements ?										
190.	A) Optic, Abducens, l	•	B) Optic, Oculomo	tor Trochlear									
	C) Oculomotor, Abdu		D) Oculomotor, Ab										
191	The co-ordinator between	,											
1/1.	A) Thalamus	B) Hypothalamus	•	D) Colliculus									
192.	Match the pairs of disea	, • •	- pi	2) 20111-012									
	I		II										
	1. Malaria		eria bancrofti										
	2. Filariasis	b. Helmint											
	3. Typhoid		nodium falciparum										
	4. Schistosomiasis		nonella typhi										
	A) 1-c, 2-b, 3-a, 4-d		B) 1-d, 2-a, 3-b, 4-c										
	C) 1-a, 2-b, 3-c, 4-d		D) 1-c, 2-a, 3-d, 4-b)									

	III IIII		-21-		
193.	The clot formation can	be prevented by treat	tme	nt withi	n gene therapy.
	A) DNase		B)	Recombinant vac	cine
	C) TPA		D)	TGF-B	
194.	Select the CORRECT	match:			
	A) Gibbon - Cercopi	thecoidea	B)	Lemur – Prosimii	
	C) New World Monk	xey – Hominoidea	D)	Tarsier – Anthrop	ooidea
195.	Atrial Natriuretic Facto	or (ANF) decreases			
	A) Blood pressure		B)	Secretion of renin	1
	C) Na ⁺ excretion		D)	Vasodilation	
196.	The characters such as are observed in		out,	strong and stout for	orelimbs, well developed claws
	A) Arboreal	B) Aerial	C)	Cursorial	D) Fossorial
197.	Deposition of	in the joints causes g	gout		
	A) Urea	B) Uric acid	C)	Guanine	D) Ammonia
198.	The glycoprotein, fertil	izin is secreted by			
	A) Ovum	B) Ovary	C)	Sperm	D) Testis
199.	In the given diagram I	and II indicate			
	Munit Suramment Samme	—п			
	A) Chromomere and	chromonemata	B)	Centromere and s	econdary constriction
	C) Secondary constri	ction and satellite	D)	Telomere and sate	ellite
200.	Find the CORRECT m	atch:			
	Column A	Column B	(Column C	
	i. Mackeral	Rastrelliger	F	Freshwater fish	
	ii. Honey bee	Apis	Ţ	Vax	
	iii. Mirgala	Tacchardia	N	Marine waterfish	
	iv. Silkworm	Bombyx	N	Mulberry silk	
	A) ii and iv	B) i and ii		iv only	D) i and iii

LOGARITHMS

10 11 12 13	0000 0414 0792	0043 0453	0086	0128	0170	211112			entries.		5	9	40	47	04	00	20	24	00
12	0792	0453	0492	1							0	9	13	17	21	26	30	34	38
12	0792	0453	0402			0212	0253	0294	0334	0374	4	8	12	16	20	24	28	32	36
	5530565		0492	0531	0569						4	8	12	16	20	23	27	31	35
	5530565					0607	0645	0682	0719	0755	4	7	11	15	18	22	26	29	33
13	4400	0828	0864	0899	0934						3	7	11	14	18	21	25	28	32
13	4400					0969	1004	1038	1072	1106	3	7	10	14	17	20	24	27	31
	1139	1173	1206	1239	1271						3	6	10	13	16	19	23	26	29
						1303	1335	1367	1399	1430	3	6	10	13	16	19	22	25	29
14	1461	1492	1523	1553	1584						3	6	9	12	15	19	22	25	28
			L		PC-541C16	1614	1644	1673	1703	1732	3	6	9	12	14	17	20	23	26
15	1761	1790	1818	1847	1875						3	6	9	11	14	17	20	23	26
						1903	1931	1959	1987	2014	3	6	8	11	14	17	19	22	25
16	2041	2068	2095	2122	2148		11274-2476-77		**************************************		3	6	8	11	14	16	19	22	24
						2175	2201	2227	2253	2279	3	5	8	10	13	16	18	21	23
17	2304	2330	2355	2380	2405						3	5	8	10	13	15	18	20	23
\perp						2430	2455	2480	2504	2529	3	5	8	10	12	15	17	20	22
18	2553	2577	2601	2625	2648	eggant and	agranaca	1,453yo,56346444	1999 and the		2	5	7	9	12	14	17	19	21
						2672	2695	2718	2742	2765	2	4	7	9	11	14	16	18	21
19	2788	2810	2833	2856	2878						2	4	7	9	11	13	16	18	20
-						2900	2923	2945	2967	2989	2	4	6	8	11	13	15	17	19
20	3010	3032	3054	3075	3096	3118	3139	3160	3181	3201	2	4	6	8	11	13	15	17	19
21	3222	3243	3263	3284	3304	3324	3345	3365	3385	3404	2	4	6	8	10	12	14	16	18
22	3424	3444	3464	3483	3502	3522	3541	3560	3579	3598	2	4	6	8	10	12	14	15	17
23	3617	3636	3655	3674	3692	3711	3729	3747	3766	3784	2	4	6	7	9	11	13	15	17
24	3802	3820	3838	3856	3874	3892	3909	3927	3945	3962	2	4	5	7	9	11	12	14	16
25	3979	3997	4014	4031	4048	4065	4082	4099	4116	4133	2	3	5	7	9	10	12	14	15
26	4150	4166	4183	4200	4216	4232	4249	4265	4281	4298	2	3	5	7	8	10	11	14	15
27	4314	4330	4346	4362	4378	4393	4409	4425	4440	4456	2	3	5	6	8	9	11	13	14
28	4472	4487	4502	4518	4533	4548	4564	4579	4594	4609	2	3	5	6	8	9	11	12	14
29	4624	4639	4654	4669	4683	4698	4713	4728	4742	4757	1	3	4	6	7 7	9	10	12	13 13
30	4771	4786	4800	4814	4829	4843	4857	4871	4886	4900	1	3	4	6	7	9	10	11	5.33.5
31	4914	4928	4942	4955 5092	4969	4983	4997	5011 5145	5024	5038	1	3	4	6		8	10	11	12
32	5051 5185	5065 5198	5079 5211	5224	5105 5237	5119 5250	5132 5263	5276	5159 5289	5302	1	3	4	5	7 6	8	9	10	12 12
34	5315	5328	5340	5353	5366	5378	5391	5403	5416	5428	1	3	4	5	6	8	9	10	11
35	5441	5453	5465	5478	5490	5502	5514	5527	5539	5551	1	2	4	5	6	7	9	10	11
36	5563	5575	5587	5599	5611	5623	5635	5647	5658	5670	1	2	4	5	6	7	8	10	11
37	5682	5694	5705	5717	5729	5740	5752	5763	5775	5786	1	2	3	5	6	7	8	9	10
38	5798	5809	5821	5832	5843	5855	5866	5877	5888	5899	1	2	3	5	6	7	8	9	10
39	5911	5922	5933	5944	5955	5966	5977	5988	5999	6010	1	2	3	4	5	7	8	9	10
40	6021	6031	6042	6053	6064	6075	6085	6096	6107	6117	1	2	3	4	5	6	8	9	10
41	6128	6138	6149	6160	6170	6180	6191	6201	6212	6222	1	2	3	4	5	6	7	8	9
42	6232	6243	6253	6263	6274	6284	6294	6304	6314	6325	1	2	3	4	5	6	7	8	9
43	6335	6345	6355	6365	6375	6385	6395	6405	6415	6425	1	2	3	4	5	6	7	8	9
44	6435	6444	6454	6464	6474	6484	6493	6503	6513	6522	1	2	3	4	5	6	7	8	9
45	6532	6542	6551	6561	6571	6580	6590	6599	6609	6618	1	2	3	4	5	6	7	8	9
46	6628	6637	6646	6656	6665	6675	6684	6693	6702	6712	1	2	3	4	5	6	7	7	8
47	6721	6730	6739	6749	6758	6767	6776	6785	6794	6803	1	2	3	4	5	5	6	7	8
48	6812	6821	6830	6839	6848	6857	6866	6875	6884	6893	1	2	3	4	4	5	6	7	8
49	6902	6911	6920	6928	6937	6946	6955	6964	6972	6981	1	2	3	4	4	5	6	7	8

LOGARITHMS

	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9
50	6990	6998	7007	7016	7024	7033	7042	7050	7059	7067	1	2	3	3	4	5	6	7	8
51	7076	7084	7093	7101	7110	7118	7126	7135	7143	7152	1	2	3	3	4	5	6	7	8
52	7160	7168	7177	7185	7193	7202	7210	7218	7226	7235	1	2	2	3	4	5	6	7	7
53	7243	7251	7259	7267	7275	7284	7292	7300	7308	7316	1	2	2	3	4	5	6	6	7
54	7324	7332	7340	7348	7356	7364	7372	7380	7388	7396	1	2	2	3	4	5	6	6	7
55	7404	7412	7419	7427	7435	7443	7451	7459	7466	7474	1	2	2	3	4	5	5	6	7
56	7482	7490	7497	7505	7513	7520	7528	7536	7543	7551	1	2	2	3	4	5	5	6	7
57	7559	7566	7574	7582	7589	7597	7604	7612	7619	7627	1	2	2	3	4	5	5	6	7
58	7634	7642	7649	7657	7664	7672	7679	7686	7694	7701	1	1	2	3	4	4	5	6	7
59	7709	7716	7723	7731	7738	7745	7752	7760	7767	7774	1	1	2	3	4	4	5	6	7
60	7782	7789	7796	7803	7810	7818	7825	7832	7839	7846	1	1	2	3	4	4	5	6	6
61	7853	7860	7868	7875	7882	7889	7896	7903	7910	7917	1	1	2	3	4	4	5	6	6
62	7924	7931	7938	7945	7952	7959	7966	7973	7980	7987	1	1	2	3	3	4	5	6	6
63	7993	8000	8007	8014	8021	8028	8035	8041	8048	8055	1	1	2	3	3	4	5	5	6
64	8062	8069	8075	8082	8089	8096	8102	8109	8116	8122	1	1	2	3	3	4	5	5	6
65	8129	8136	8142	8149	8156	8162	8169	8176	8182	8189	1	1	2	3	3	4	5	5	6
66	8195	8202	8209	8215	8222	8228	8235	8241	8248	8254	1	1	2	3	3	4	5	5	6
67	8261	8267	8274	8280	8287	8293	8299	8306	8312	8319	1	1	2	3	3	4	5	5	6
68	8325	8331	8338	8344	8351	8357	8363	8370	8376	8382	1	1	2	3	3	4	4	5	6
69	8388	8395	8401	8407	8414	8420	8426	8432	8439	8445	1	1	2	2	3	4	4	5	6
70	8451	8457	8463	8470	8476	8482	8488	8494	8500	8506	1	1	2	2	3	4	4	5	6
71	8513	8519	8525	8531	8537	8543	8549	8555	8561	8567	1	1	2	2	3	4	4	5	5
72	8573	8579	8585	8591	8597	8603	8609	8615	8621	8627	1	1	2	2	3	4	4	5	5
73	8633	8639	8645	8651	8657	8663	8669	8675	8681	8686	1	1	2	2	3	4	4	5	5
74	8692	8698	8704	8710	8716	8722	8727	8733	8739	8745	1	1	2	2	3	4	4	5	5
75	8751	8756	8762	8768	8774	8779	8785	8791	8797	8802	1	1	2	2	3	3	4	5	5
76	8808	8814	8820	8825	8831	8837	8842	8848	8854	8859	1	1	2	2	3	3	4	5	5
77	8865	8871	8876	8882	8887	8893	8899	8904	8910	8915	1	1	2	2	3	3	4	4	5
78	8921	8927	8932	8938	8943	8949	8954	8960	8965	8971	1	1	2	2	3	3	4	4	5
79	8976	8982	8987	8993	8998	9004	9009	9015	9020	9025	1	1	2	2	3	3	4	4	5
80	9031	9036	9042	9047	9053	9058	9063	9069	9074	9079	1	1	2	2	3	3	4	4	5
81	9085	9090	9096	9101	9106	9112	9117	9122	9128	9133	1	1	2	2	3	3	4	4	5
82	9138	9143	9149	9154	9159	9165	9170	9175	9180	9186	1	1	2	2	3	3	4	4	5
83	9191	9196	9201	9206	9212	9217	9222	9227	9232	9238	1	1	2	2	3	3	4	4	5
84	9243	9248	9253	9258	9263	9269	9274	9279	9284	9289	1	1	2	2	3	3	4	4	5
85	9294	9299	9304	9309	9315	9320	9325	9330	9335	9340	1	1	2	2	3	3	4	4	5
86	9345	9350	9355	9360	9365	9370	9375	9380	9385	9390	1	1	2	2	3	3	4	4	5
87	9395	9400	9405	9410	9415	9420	9425	9430	9435	9440	0	1	1	2	2	3	3	4	4
88	9445	9450	9455	9460	9465	9469	9474	9479	9484	9489	0	1	1	2	2	3	3	4	4
89	9494	9499	9504	9509	9513	9518	9523	9528	9533	9538	0	1	1	2	2	3	3	4	4
90	9542	9547	9552	9557	9562	9566	9571	9576	9581	9586	0	1	1	2	2	3	3	4	4
91	9590	9595	9600	9605	9609	9614	9619	9624	9628	9633	0	1	1	2	2	3	3	4	4
92	9638	9643	9647	9652	9657	9661	9666	9671	9675	9680	0	1	1	2	2	3	3	4	4
93	9685	9689	9694	9699	9703	9708	9713	9717	9722	9727	0	1	1	2	2	3	3	4	4
94	9731	9736	9741	9745	9750	9754	9759	9763	9768	9773	0	1	1	2	2	3	3	4	4
95	9777	9782	9786	9791	9795	9800	9805	9809	9814	9818	0	1	1	2	2	3	3	4	4
96	9823	9827	9832	9836	9841	9845	9850	9854	9859	9863	0	1	1	2	2	3	3	4	4
97	9868	9872	9877	9881	9886	9890	9894	9899	9903	9908	0	1	1	2	2	3	3	4	4
98	9912	9917	9921	9926	9930	9934	9939	9943	9948	9952	0	1	1	2	2	3	3	4	4
99	9956	9961	9965	9969	9974	9978	9983	9987	9991	9996	0	1	1	2	2	3	3	3	4

ANTILOGARITHMS

	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9
0.00	1000	1002	1005	1007	1009	1012	1014	1016	1019	1021	0	0	1	1	1	1	2	2	2
0.01	1023	1026	1028	1030	1033	1035	1038	1040	1042	1045	0	0	1	1	1	1	2	2	2
0.02	1047	1050	1052	1054	1057	1059	1062	1064	1067	1069	0	0	1	1	1	1	2	2	2
0.03	1072	1074	1076	1079	1081	1084	1086	1089	1091	1094	0	0	1	1	1	1	2	2	2
0.04	1096	1099	1102	1104	1107	1109	1112	1114	1117	1119	0	1	1	1	1	2	2	2	2
0.05	1122	1125	1127	1130	1132	1135	1138	1140	1143	1146	0	1	1	1	1	2	2	2	2
0.06	1148	1151	1153	1156	1159	1161	1164	1167	1169	1172	0	1	1	1	1	2	2	2	2
0.07	1175	1178	1180	1183	1186	1189	1191	1194	1197	1199	0	1	1	1	1	2	2	2	2
0.08	1202	1205	1208	1211	1213	1216	1219	1222	1225	1227	0	1	1	1	1	2	2	2	3
0.09	1230	1233	1236	1239	1242	1245	1247	1250	1253	1256	0	1	1	1	1	2	2	2	3
0.10	1259	1262	1265	1268	1271	1274	1276	1279	1282	1285	0	1	1	1	1	2	2	2	3
0.11	1288	1291	1294	1297	1300	1303	1306	1309	1312	1315	0	1	1	1	2	2	2	2	3
0.12	1318	1321	1324	1327	1330	1334	1337	1340	1343	1346	0	1	1	1	2	2	2	2	3
0.13	1349	1352	1355	1358	1361	1365	1368	1371	1374	1377	0	1	1	1	2	2	2	3	3
0.14	1380	1384	1387	1390	1393	1396	1400	1403	1406	1409	0	1	1	1	2	2	2	3	3
0.15	1413	1416	1419	1422	1426	1429	1432	1435	1439	1442	0	1	1	1	2	2	2	3	3
0.16	1445	1449	1452	1455	1459	1462	1466	1469	1472	1476	0	1	1	1	2	2	2	3	3
0.17	1479	1483	1486	1489	1493	1496	1500	1503	1507	1510	0	1	1	1	2	2	2	3	3
0.18	1514	1517	1521	1524	1528	1531	1535	1538	1542	1545	0	1	1	1	2	2	2	3	3
0.19	1549	1552	1556	1560	1563	1567	1570	1574	1578	1581	0	1	1	1	2	2	3	3	3
0.20	1585	1589	1592	1596	1600	1603	1607	1611	1614	1618	0	1	1	1	2	2	3	3	3
0.21	1622	1626	1629	1633	1637	1641	1644	1648	1652	1656	0	1	1	2	2	2	3	3	3
0.22	1660	1663	1667	1671	1675	1679	1683	1687	1690	1694	0	1	1	2	2	2	3	3	3
0.23	1698	1702	1706	1710	1714	1718	1722	1726	1730	1734	0	1	1	2	2	2	3	3	4
0.24	1738	1742	1746	1750	1754	1758	1762	1766	1770	1774	0	1	1	2	2	2	3	3	4
0.25	1778	1782	1786	1791	1795	1799	1803	1807	1811	1816	0	1	1	2	2	2	3	3	4
0.26	1820	1824	1828	1832	1837	1841	1845	1849	1854	1858	0	1	1	2	2	3	3	3	4
0.27	1862	1866	1871	1875	1879	1884	1888	1892	1897	1901	0	1	1	2	2	3	3	3	4
0.28	1905	1910	1914	1919	1923	1928	1932	1936	1941	1945	0	1	1	2	2	3	3	4	4
0.29	1950	1954	1959	1963	1968	1972	1977	1982	1986	1991	0	1	1	2	2	3	3	4	4
0.30	1995	2000	2004	2009	2014	2018	2023	2028	2032	2037	0	1	1	2	2	3	3	4	4
0.31	2042	2046	2051	2056	2061	2065	2070	2075	2080	2084	0	1	1	2	2	3	3	4	4
0.32	2089	2094	2099	2104	2109	2113	2118	2123	2128	2133	0	1	1	2	2	3	3	4	4
0.33	2138	2143	2148	2153	2158	2163	2168	2173	2178	2183	0	1	1	2	2	3	3	4	4
0.34	2188	2193	2198	2203	2208	2213	2218	2223	2228	2234	1	1	2	2	3	3	4	4	5
0.35	2239	2244	2249	2254	2259	2265	2270	2275	2280	2286	1	1	2	2	3	3	4	4	5
0.36	2291	2296	2301	2307	2312	2317	2323	2328	2333	2339	1	1	2	2	3	3	4	4	5
0.37	2344	2350	2355	2360	2366	2371	2377	2382	2388	2393	1	1	2	2	3	3	4	4	5
0.38	2399	2404	2410	2415	2421	2427	2432	2438	2443	2449	1	1	2	2	3	3	4	4	5
0.39	2455	2460	2466	2472	2477	2483	2489	2495	2500	2506	1	1	2	2	3	3	4	5	5
0.40	2512	2518	2523	2529	2535	2541	2547	2553	2559	2564	1	1	2	2	3	4	4	5	5
0.41	2570	2576	2582	2588	2594	2600	2606	2612	2618	2624	1	1	2	2	3	4	4	5	5
0.42	2630	2636	2642	2649	2655	2661	2667	2673	2679	2685	1	1	2	2	3	4	4	5	6
0.43	2692	2698	2704	2710	2716	2723	2729	2735	2742	2748	1	1	2	3	3	4	4	5	6
0.44	2754	2761	2767	2773	2780	2786	2793	2799	2805	2812	1	1	2	3	3	4	4	5	6
0.45	2818	2825	2831	2838	2844	2851	2858	2864	2871	2877	1	1	2	3	3	4	5	5	6
0.46	2884	2891	2897	2904	2911	2917	2924	2931	2938	2944	1	1	2	3	3	4	5	5	6
0.47	2951	2958	2965	2972	2979	2985	2992	2999	3006	3013	1	1	2	3	3	4	5	5	6
0.48	3020	3027	3034	3041	3048	3055	3062	3069	3076	3083	1	1	2	3	4	4	5	6	6
0.49	3090	3097	3105	3112	3119	3126	3133	3141	3148	3155	1	1	2	3	4	4	5	6	6

ANTILOGARITHMS

	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9
0.50	3162	3170	3177	3184	3192	3199	3206	3214	3221	3228	1	1	2	3	4	4	5	6	7
0.51	3236	3243	3251	3258	3266	3273	3281	3289	3296	3304	1	2	2	3	4	5	5	6	7
0.52	3311	3319	3327	3334	3342	3350	3357	3365	3373	3381	1	2	2	3	4	5	5	6	7
0.53	3388	3396	3404	3412	3420	3428	3436	3443	3451	3459	1	2	2	3	4	5	6	6	7
0.54	3467	3475	3483	3491	3499	3508	3516	3524	3532	3540	1	2	2	3	4	5	6	6	7
0.55	3548	3556	3565	3573	3581	3589	3597	3606	3614	3622	1	2	2	3	4	5	6	7	7
0.56	3631	3639	3648	3656	3664	3673	3681	3690	3698	3707	1	2	3	3	4	5	6	7	8
0.57	3715	3724	3733	3741	3750	3758	3767	3776	3784	3793	1	2	3	3	4	5	6	7	8
0.58	3802	3811	3819	3828	3837	3846	3855	3864	3873	3882	1	2	3	4	4	5	6	7	8
0.59	3890	3899	3908	3917	3926	3936	3945	3954	3963	3972	1	2	3	4	5	5	6	7	8
0.60	3981	3990	3999	4009	4018	4027	4036	4046	4055	4064	1	2	3	4	5	6	6	7	8
0.61	4074	4083	4093	4102	4111	4121	4130	4140	4150	4159	1	2	3	4	5	6	7	8	9
0.62	4169	4178	4188	4198	4207	4217	4227	4236	4246	4256	1	2	3	4	5	6	7	8	9
0.63	4266	4276	4285	4295	4305	4315	4325	4335	4345	4355	1	2	3	4	5	6	7	8	9
0.64	4365	4375	4385	4396	4406	4416	4426	4436	4446	4457	1	2	3	4	5	6	7	8	9
0.65	4467	4477	4487	4498	4508	4519	4529	4539	4550	4560	1	2	3	4	5	6	7	8	9
0.66	4571	4581	4592	4603	4613	4624	4634	4645	4656	4667	1	2	3	4	5	6	7	9	10
0.67	4677	4688	4699	4710	4721	4732	4742	4753	4764	4775	1	2	3	4	5	7	8	9	10
0.68	4786	4797	4808	4819	4831	4842	4853	4864	4875	4887	1	2	3	4	6	7	8	9	10
0.69	4898	4909	4920	4932	4943	4955	4966	4977	4989	5000	1	2	3	5	6	7	8	9	10
0.70	5012	5023	5035	5047	5058	5070	5082	5093	5105	5117	1	2	4	5	6	7	8	9	11
0.71	5129	5140	5152	5164	5176	5188	5200	5212	5224	5236	1	2	4	5	6	7	8	10	11
0.72	5248	5260	5272	5284	5297	5309	5321	5333	5346	5348	1	2	4	5	6	7	9	10	11
0.73	5370	5383	5395	5408	5420	5433	5445	5458	5470	5483	1	3	4	5	6	8	9	10	11
0.74	5495	5508 5636	5521 5649	5534 5662	5546	5559	5572	5585	5598	5610 5741	1	3	4	5	6 7	8	9	10	12
0.76	5754	5768	5781	5794	5675 5808	5689 5821	5702 5834	5715 5848	5728 5861	5875	1	3	4	5	7	8	9	10	12
0.77	5888	5902	5916	5929	5943	5957	5970	5984	5998	6012	1	3	4	5	7	8	10	11	12 12
0.78	6026	6039	6053	6067	6081	6095	6109	6124	6138	6152	1	3	4	6	7	8	10	11	13
0.79	6166	6180	6194	6209	6223	6237	6252	6266	6281	6295	1	3	4	6	7	8	10	11	13
0.80	6310	6324	6339	6353	6368	6383	6397	6412	6427	6442	1	3	4	6	7	9	10	12	13
0.81	6457	6471	6486	6501	6516	6531	6546	6561	6577	6592	2	3	5	6	8	9	11	12	14
0.82	6607	6622	6637	6653	6668	6683	6699	6714	6730	6745	2	3	5	6	8	9	11	12	14
0.83	6761	6776	6792	6808	6823	6839	6855	6871	6887	6902	2	3	5	6	8	9	11	13	14
0.84	6918	6934	6950	6966	6982	6998	7015	7031	7047	7063	2	3	5	6	8	10	11	13	15
0.85	7079	7096	7112	7129	7145	7161	7178	7194	7211	7228	2	3	5	7	8	10	12	13	15
0.86	7244	7261	7278	7295	7311	7328	7345	7362	7379	7396	2	3	5	7	8	10	12	13	15
0.87	7413	7430	7447	7464	7482	7499	7516	7534	7551	7568	2	3	5	7	9	10	12	14	16
0.88	7586	7603	7621	7638	7656	7674	7691	7709	7727	7745	2	4	5	7	8	11	12	14	16
0.89	7762	7780	7798	7816	7834	7852	7870	7889	7907	7925	2	4	5	7	9	11	13	14	16
0.90	7943	7962	7980	7998	8017	8035	8054	8072	8091	8110	2	4	6	7	9	11	13	15	17
0.91	8128	8147	8166	8185	8204	8222	8241	8260	8279	8299	2	4	6	8	9	11	13	15	17
0.92	8318	8337	8356	8375	8395	8414	8433	8453	8472	8492	2	4	6	8	10	12	14	15	17
0.93	8511	8531	8551	8570	8590	8610	8630	8650	8670	8690	2	4	6	8	10	12	14	16	18
0.94	8710	8730	8750	8770	8790	8810	8831	8851	8872	8892	2	4	6	8	10	12	14	16	18
0.95	8913	8933	8954	8974	8995	9016	9036	9057	9078	9099	2	4	6	8	10	12	15	17	19
0.96	9120	9141	9162	9183	9204	9220	9247	9268	9290	9311	2	4	6	8	11	13	15	17	19
0.97	9333	9354	9376	9397	9419	9441	9462	9484	9506	9528	2	4	7	9	11	13	15	17	20
0.98	9550	9572	9594	9616	9638	9661	9683	9705	9727	9750	2	4	7	9	11	13	16	18	20
0.99	9772	9795	9817	9840	9863	9886	9908	9931	9954	9977	2	5	7	9	11	14	16	18	20

